
NDB - SELECT - Cursor-Oriented
Like the Natural FIND statement, the cursor-oriented SELECT statement is used to select a set of rows (records)
from one or more DB2 tables, based on a search criterion. Since a database loop is initiated, the loop must be closed
by a LOOP (reporting mode) or END-SELECT statement. With this construction, Natural uses the same loop
processing as with the FIND statement.

In addition, no cursor management is required from the application program; it is automatically handled by Natural.

Below is information on:

OPTIMIZE FOR integer ROWS
WITH - Isolation Level
QUERYNO
FETCH FIRST
WITH HOLD
WITH RETURN
WITH INSENSITIVE/SENSITIVE

OPTIMIZE FOR integer ROWS

[OPTIMIZE FOR integer ROWS]

The OPTIMIZE FOR integer ROWS clause is used to inform DB2 in advance of the number (integer) of rows to be
retrieved from the result table. Without this clause, DB2 assumes that all rows of the result table are to be retrieved
and optimizes accordingly.

This optional clause is useful if you know how many rows are likely to be selected, because optimizing for integer
rows can improve performance if the number of rows actually selected does not exceed the integer value (which can
be in the range from 0 to 2147483647).

Example:

SELECT name INTO #name FROM table
WHERE AGE = 2 OPTIMIZE FOR 100 ROWS

WITH - Isolation Level

WITH

CS
RR
RR KEEP UPDATE LOCK
RS
RS KEEP UPDATE LOCKS
UR

1Copyright Software AG 2003

NDB - SELECT - Cursor-OrientedNDB - SELECT - Cursor-Oriented

This WITH clause allows you to specify an explicit isolation level with which the statement is to be executed. The
following options are provided:

Option Meaning

CS Cursor stability

RR Repeatable Read

RS Read Stability

RS KEEP UPDATE LOCKS Only valid if a FOR UPDATE OF clause is specified.

Read Stability and retaining update locks.

RR KEEP UPDATE LOCKS Only valid if a FOR UPDATE OF clause is specified.

Repeatable Read and retaining update locks.

UR Uncommitted Read

WITH UR can only be specified within a SELECT statement and when the table is read-only. The default isolation
level is determined by the isolation of the package or plan into which the statement is bound. The default isolation
level also depends on whether the result table is read-only or not. To find out the default isolation level, refer to the
IBM literature.

Note:
This option also works for non-cursor selection.

QUERYNO

[QUERYNO integer]

The QUERNO clause specifies the number to be used for this SQL statement in EXPLAIN output and trace records.
The number is used as QUERYNO column in the PLAN_TABLE for the rows that contain information on this
statement.

FETCH FIRST

FETCH FIRST
1
integer

ROWS
ROW

ONLY

The FETCH FIRST clause limits the number of rows to be fetched. It improves the performance of queries with
potentially large result sets if only a limited number of rows is needed.

Copyright Software AG 20032

NDB - SELECT - Cursor-OrientedQUERYNO

WITH HOLD

[WITH HOLD]

The WITH HOLD clause is used to prevent cursors from being closed by a commit operation within database loops.
If WITH HOLD is specified, a commit operation commits all the modifications of the current logical unit of work,
but releases only locks that are not required to maintain the cursor. This optional clause is mainly useful in batch
mode; it is ignored in CICS pseudo-conversational mode and in IMS message-driven programs.

Example:

SELECT name INTO #name FROM table
WHERE AGE = 2 WITH HOLD

WITH RETURN

[WITH RETURN]

The WITH RETURN clause is used to create result sets. Therefore, this clause only applies to programs which
operate as Natural stored procedure. If the WITH RETURN clause is specified in a SELECT statement, the
underlying cursor remains open when the associated processing loop is left, except when the processing loop had
read all rows of the result set itself. During first execution of the processing loop, only the cursor is opened. The first
row is not yet fetched. This allows the Natural program to return a full result set to the caller of the stored procedure.
It is up to the Natural you to decide how many rows are processed by the Natural stored procedure and how many
unprocessed rows of the result set are returned to the caller of the stored procedure. If you want to process rows of
the select operation in the Natural stored procedure, you must define

IF *counter =1 ESCAPE TOP END-IF

in order to avoid processing of the first "empty row" in the processing loop. If you decide to terminate the processing
of rows, you must define

If condition ESCAPE BOTTOM END-IF

in the processing loop.

If the program reads all rows of the result set, the cursor is closed and no result set is returned for this SELECT
WITH RETURN to the caller of the stored procedure.

The following programs are examples for retrieving full result sets (Example 1) and partial result sets (Example 2).

3Copyright Software AG 2003

WITH HOLDNDB - SELECT - Cursor-Oriented

Example 1:

DEFINE DATA LOCAL
. . .
END DEFINE
*
* Return all rows of the result set
*
SELECT * INTO VIEW V2
 FROM SYSIBM-SYSROUTINES
 WHERE RESULT_SETS > 0
 WITH RETURN
ESCAPE BOTTOM
END-SELECT
END

Example 2:

DEFINE DATA LOCAL
. . .
END DEFINE
*
* Read the first two rows and return the rest as result set
*
SELECT * INTO VIEW V2
 FROM SYSIBM-SYSROUTINES
 WHERE RESULT_SETS > 0
 WITH RETURN
WRITE PROCEDURE *COUNTER
IF *COUNTER = 1 ESCAPE TOP END-IF
IF *COUNTER =3 ESCAPE BOTTOM END-IF
END-SELECT
END

WITH INSENSITIVE/SENSITIVE

WITH
INSENSITIVE SCROLL
SENSITIVE STATIC SCROLL

[:] scroll_hv [GIVING [:] sqlcode]

NDB supports DB2 scrollable cursors by using the clauses WITH INSENSITIVE SCROLL and WITH SENSITIVE
STATIC SCROLL. Scrollable cursors allow NDB applications to position randomly any row in a result set. With
non-scrollable cursors, the data can only be read sequentially, from top to bottom.

Scrollable cursors use temporary result tables and require a TEMP database in DB2 (see the relevant DB2 literature
by IBM).

INSENSITIVE SCROLL refers to a cursor that cannot be used in Positioned UPDATE or Positioned DELETE
operations. In addition, once opened, an INSENSITIVE SCROLL cursor does not reflect UPDATEs, DELETEs or
INSERTs against the base table, after the cursor was opened.

SENSITIVE STATIC SCROLL refers to a cursor that can be used for Positioned UPDATEs or Positioned DELETE
operations. In addition, a SENSITIVE STATIC SCROLL cursor reflects UPDATEs, DELETEs of base table rows.
The cursor does not reflect INSERT operations.

Copyright Software AG 20034

NDB - SELECT - Cursor-OrientedWITH INSENSITIVE/SENSITIVE

Below is information on:

scroll_hv
GIVING [:] sqlcode

scroll_hv

The variable scroll_hv must be alphanumeric.

The variable scroll_hv specifies which row of the result table will be fetched during one execution of the database
processing loop. Additionally, it specifies the sensitivity of UPDATEs or DELETEs against the base table row
during a FETCH operation. The contents of scroll_hv is evaluated each time the database processing loop cycle is
executed.

INSENSITIVE
SENSITVE

AFTER
BEFORE
CURRENT
FIRST
LAST
PRIOR
NEXT | N

ABSOLUTE
RELATIVE

[+ | -] integer

scroll_hv - Sensitivity Specification

The specification of the sensitivity INSENSITIVE or SENSITIVE is optional.

If it is omitted from a FETCH against an INSENSITIVE SCROLL cursor, the default will be INSENSITIVE.

If it is omitted from a FETCH against a SENSITIVE STATIC SCROLL cursor, the

The sensitivity specifies whether or not the rows in the base table are checked when performing a FETCH operation
for a scrollable cursor.

If the corresponding base table column qualifies for the WHERE clause and has not been deleted, a SENSITIVE
FETCH will return the row of the base table.

If the corresponding base table column does not qualify for the WHERE clause or has not been deleted, a
SENSITIVE FETCH will return an UPDATE hole or a DELETE hole state (SQLCODE +222).

An INSENSITIVE FETCH will not check the corresponding base table column.

scroll_hv - Options

Below is an explanation of the options available to determine the row(s) to fetch, the position from where to start the
fetch and/or the direction in which to scroll:

5Copyright Software AG 2003

scroll_hvNDB - SELECT - Cursor-Oriented

Option Explanation

AFTER Positions after the last row.

No row is fetched.

BEFORE Positions before the first.

No row is fetched.

CURRENT Fetches the current row (again).

FIRST Fetches the first row.

LAST Fetches the last row.

NEXT Fetches the row after the current one.

This is the default value.

PRIOR Fetch the row before the current one.

+/- integer Only applies in connection with ABSOLUTE or RELATIVE.

Specifies the position of the row to be fetched ABSOLUTE or RELATIVE.

Enter a plus (+) or minus (-) sign followed by an integer.

The default value is a plus (+).

ABSOLUTE Only applies in connection with +/- integer.

Uses integer as the absolute position within the result set from where the row is fetched.

See the DB2 SQL reference by IBM about further details regarding positive and negative position
numbers.

RELATIVE Only applies in connection with +/- integer.

Uses integer as the relative position to the current position within the result set from where the row
is fetched.

See the DB2 SQL reference by IBM about further details regarding positive and negative position
numbers.

GIVING [:] sqlcode

The specification of GIVING [:] sqlcode is optional. If specified, the Natural variable [:] sqlcode must be of the
Format I4. The values for this variable are returned from the DB2 SQLCODE of the underlying FETCH operation.
This allows the application to react to different statuses encountered while the scrollable cursor is open. The most
important status codes indicated by SQLCODE are listed in the following table:

Copyright Software AG 20036

NDB - SELECT - Cursor-OrientedGIVING [:] sqlcode

SQLCODE Explanation

0 FETCH operation successful, data returned except for FETCH with option BEFORE or AFTER.

+100 Row not found, cursor still open, no data returned.

+222 UPDATE or DELETE hole, cursor still open, no data returned. The corresponding row of the base
table has been updated or deleted, so that the row no longer qualifies for the WHERE clause.

+231 Fetch operation with the option CURRENT, but cursor not positioned on any row, no data returned.
This occurs if the previous FETCH returned SQLCODE +100.

If you specify GIVING [:] sqlcode, the application must react to the different statuses. If a SQLCODE +100 is
entered five times successively and without terminal I/O, the NDB runtime will issue Natural Error NAT3296 in
order to avoid application looping. The application can terminate the processing loop by executing an ESCAPE
statement.

If you do not specify GIVING [:] sqlcode, except for SQLCODE 0 and SQLCODE +100, each SQLCODE will
generate Natural Error NAT3700 and the processing loop will be terminated. SQLCODE +100 (row not found) will
terminate the processing loop.

See also the example program DEM2SCRL supplied in the Natural system library SYSDB2.

7Copyright Software AG 2003

GIVING [:] sqlcodeNDB - SELECT - Cursor-Oriented

	NDB - SELECT - Cursor-Oriented
	OPTIMIZE FOR integer ROWS
	WITH - Isolation Level
	QUERYNO
	FETCH FIRST
	WITH HOLD
	WITH RETURN
	WITH INSENSITIVE/SENSITIVE
	scroll_hv
	GIVING [:] sqlcode

